Perturbations in the Nevai matrix class of orthogonal matrix polynomials
نویسندگان
چکیده
In this paper we study a Jacobi block matrix and the behavior of the limit of its entries when a perturbation of its spectral matrix measure by the addition of a Dirac delta matrix measure is introduced. © 2001 Elsevier Science Inc. All rights reserved.
منابع مشابه
Zeros and ratio asymptotics for matrix orthogonal polynomials
Ratio asymptotics for matrix orthogonal polynomials with recurrence coefficients An and Bn having limits A and B respectively (the matrix Nevai class) were obtained by Durán. In the present paper we obtain an alternative description of the limiting ratio. We generalize it to recurrence coefficients which are asymptotically periodic with higher periodicity, or which are slowly varying in functio...
متن کاملPerturbations of orthogonal polynomials with periodic recursion coefficients
We extend the results of Denisov–Rakhmanov, Szegő–Shohat– Nevai, and Killip–Simon from asymptotically constant orthogonal polynomials on the real line (OPRL) and unit circle (OPUC) to asymptotically periodic OPRL and OPUC. The key tool is a characterization of the isospectral torus that is well adapted to the study of perturbations.
متن کاملA fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations
In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کاملThe operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications
In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...
متن کاملNew operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کامل